hand. "Great storage works," he said, "are necessary to equalize the flow of streams and to save the floodwaters. Their construction has been conclusively shown to be an undertaking too vast for private effort. Nor can it be best accomplished by the individual States acting alone. . . . It is properly a national function, at least in some of its features." Despite the apparent logic of Roosevelt's argument, one might reasonably speculate that the underlying problem with irrigation projects had more to do with the rate at which investment was occurring than with the intrinsic inability of private capital or state governments to provide funding. As with the transcontinental railroads, federal law may have been trying to accelerate developments whose time had not yet come; as with the railroads, an unsurprising consequence was that such ventures initially proved only marginally viable, heading into bankruptcy at an alarming rate. And so one should be careful not to take at face value Roosevelt's conclusion about the necessity or the proper form of federal intervention. The fact that his prophecy came true may say more about the seductive power of the reclamation dream than about the inevitability of the government's role in realizing it.

Roosevelt's prophecy did indeed prove self-fulfilling. When Representative Francis G. Newlands, of Nevada, proposed legislation dramatically expanding the federal role in western reclamation, he had little trouble moving it through Congress, supported as it was by the president and by the vigorous lobbying efforts of the California lawyer George Maxwell's National Irrigation Association. The resulting Reclamation Act of 1902—more familiarly known as the Newlands Act—clearly ranks with the 1785 Ordinance and the Homestead Act as one of the most important American land laws ever passed. The act created a revolving Reclamation Fund, which would receive revenues from the sales of all public lands in sixteen western states. Money from the fund was to be used for constructing dams and irrigation systems in those states. Individuals who purchased the resulting water were to pay high enough fees to replenish the fund within a specified number of years, thereby making it a perennial source of investment capital for reclamation projects throughout the West. (One should note that even if this fund had been fully repaid on schedule—which it was not—it would still have represented a significant federal subsidy, since water users were not expected to pay any interest on the money they had been loaned. As repayment periods stretched from ten to twenty to forty years, the invisible subsidy implied by these interest-free loans ballooned accordingly.) To make sure that the benefits of government-funded irrigation went to small farmers and not to large speculators or corporate farm operations, the act specified that no single landowner could purchase water to irrigate more than 160 acres of land. The act thus sought to continue a long tradition in American land law, dating back to the Homestead Act and before, of trying to promote agrarian communities of single-family farms as the proper foundation for American democracy.

The responsibility for managing the revolving fund was assigned to the new Reclamation Service (renamed the Bureau of Reclamation in 1923). Appealing to scientific expertise and centralized executive authority to legitimize its work on behalf of "the people," the office paralleled Pinchot's Forest Service as an expression of Progressive Era conservation values. From 1902 to 1914, the new agency was headed by Frederick H. Newell, a leading civil engineer who had worked closely with Newlands in framing the Reclamation Act. Work first began on the Salt River Project in Arizona
and the Truckee River Project in Newlands' Nevada district, but by 1906 almost all of
the western states had projects under way. Newell assembled a superb team of engineers
who designed and built not just dams and reservoirs but also the infrastructure—roads,
rail lines, cement factories, construction camps—necessary to erect them. Numerous
technical problems arose almost from the outset—destructive floods, leaky geological
formations, defective designs, faulty construction—but in general the engineering
achievements of the act's first two decades were its most impressive legacy.

Measured in economic terms, though, the government's accomplishments under
the Newlands Act were more ambiguous. In part because the Reclamation Service had
no formal affiliation with the Department of Agriculture, its engineers were less attentive
than they might have been to the soil and drainage conditions that farmers would face
in adopting irrigation. Speculators tended to buy up land in the vicinity of new dam
projects, selling it to farmers at high enough prices that little was left over to pay back
the revolving fund. Settlers often moved into an area long before water was available, but
they had to stay on their as yet unproductive land for up to five years if they hoped to
acquire title to it. Many were undercapitalized—a classic problem of small farmers
under the Homestead Act as well—and thus lacked the tools and equipment to make
proper use of their government-supplied water once it arrived.

By 1910, it was already clear that farmers were having difficulty meeting their
obligations to the Reclamation Fund, so Congress stepped in with the first of what would
eventually be a long series of extensions delaying deadlines for making payments. As time
went on, the Bureau of Reclamation more or less ignored the rule against sales of water
to farm units larger than 160 acres, and large agribusiness operations came to control
an increasing share of irrigated acreage in the West. By the early 1920s, federal re-
clamation projects had produced not much more than an additional one million acres
of irrigated land, though the infrastructure was in place for significant expansion in the
future. At the same time, local and private efforts based on the model of the California
irrigation district had increased their acreage significantly, so that federal projects
accounted for only about one-tenth of the regional whole. Throughout the West,
whether constructed with private or federal capital, the irrigated rural landscape was
dominated by federal bureaucracies and large landowners, with the government
showing a clear tendency to favor large long-term water users over small ones. Contrary
to the original promise, the society that emerged in "reclaimed" desert areas was a far cry
from the Jeffersonian vision of agrarian democracy and single-family farms.

The Power of a Dam
Ironically, it was the Great Depression of the 1930s and the rising urban-industrial
demand for electricity that would help secure federal reclamation efforts in the West. In
1928, Congress authorized the construction of a 726-foot-high dam in Black Canyon
on the Colorado River. Once complete, it would be the tallest dam in the world. Unlike
earlier projects, in which the generation of hydropower had been an incidental by-
product of water impoundment for irrigation and flood control, Boulder Dam—so
called because the initially proposed construction site was the one the public
remembered—was designed to earn back a significant share of its cost from the sale of
electricity. Its generators would be owned and operated by the Southern California
Edison Company, the Los Angeles Metropolitan Water District, and the City of Los Angeles—all of which suggested how much the reclamation agenda was shifting from its original rural focus.

Elwood Mead, then serving as head of the Bureau of Reclamation, promoted the Boulder Canyon Project as an example of multipurpose river-basin development. If the bureau conceived of its mandate in an integrated fashion, he argued, it could facilitate regional economic growth by providing construction jobs for unemployed workers, irrigation for farms, flood control for residents of river valleys, water for urban drinking supplies, and electricity for farms, factories, and cities alike. Perhaps most important, sales of electricity to urban and industrial consumers were a far more promising way to pay off deficits in the Reclamation Fund than trying to extract payments from small farmers who were perennially in arrears. In short, Boulder (later Hoover) Dam was the answer to a reclamationist’s prayers. Its success would foster a series of integrated projects—Grand Coulee and associated dams on the Columbia, the Central Valley Project in California, the Colorado-Big Thompson Project in Colorado, and other equally grandiose initiatives—each of which would contribute to the Bureau of Reclamation’s growing influence throughout the West. More important still, Boulder Dam and the projects that followed it also signified the increasing role that metropolitan institutions and urban political-economic power would henceforth play in reshaping the western environment.

For the Bureau of Reclamation was by no means the only entity promoting major water projects in the West. By 1900, the growing cities of San Francisco and Los Angeles were seeking guaranteed access to water to ensure their growth well into the new century. Civil engineers and politicians in both cities cast their eyes east toward the Sierra Nevada, where cold mountain peaks captured much of the state’s precipitation in their winter snowpack. Los Angeles found its “river out of Eden” in the Owens Valley at the southern end of the mountains; San Francisco located its in the Hetch Hetchy Valley just north of Yosemite. Although the struggle to seize these areas for urban water supplies met with severe political resistance—from farmers and boosters who had hoped to develop the Owens Valley for agriculture and from preservationists and nature lovers who sought to protect Yosemite National Park from invasion—in the end the metropolitan demand for water proved irresistible. The Los Angeles Aqueduct was completed in 1913, carrying water 233 miles from the mountains, and the Hetch Hetchy Aqueduct—155 miles long—was finished two decades later. By then, both systems were producing electricity as well as water in such abundance that neither city could use anything close to the full supply. As a result, both cities were in the curious position of being able to sell water to farms and suburban districts in the desert environs around them, yielding important sources of revenue on which both soon became dependent. No matter whether the original source was local, state, or federal, the capital that had been invested to flood Hetch Hetchy, the Owens Valley, and Boulder Canyon made it possible for Californians to enjoy astonishingly cheap water even in the midst of desert landscapes that had never before known such abundance.

One can see in these massive projects and in the other bureaucratic legacies of Progressive Era conservation the compromises that westerners and other Americans
To supply the water and electric power that would ensure the continued growth of Los Angeles, federal and local authorities initiated massive engineering projects that fundamentally altered the landscape of more distant parts of the West. The first Los Angeles aqueduct, completed in 1913, brought water from the Owens Valley 233 miles away and destroyed the economic future of that rural valley on the eastern side of the Sierra Nevada. The construction of Boulder Dam, completed in 1935, led to the creation of Lake Mead in the middle of the Nevada desert.
were willing to make in the service of the reclamation dream. Turner had argued that the frontier had been a landscape of freedom, in which Americans had discovered the liberty and independence that characterized them as a nation. As embodied in the Homestead Act and in the land-limitation clause of the Newlands Act, frontier settlement was supposed to be for brave individuals, for yeoman farmers in the Jeffersonian mold, for the "little guy" hoping to seize opportunities unavailable in more settled and constricted lands. So said the myth, and for all its distortions it had exercised great influence over Americans' notions of themselves. But the deeper environmental reality was that the frontier had served first and foremost as a landscape of abundance—as mythical as it was material—and this abundance had made possible the way of life Americans considered essential to their national identity. If some measure of personal freedom had to be sacrificed to protect this more fundamental good, then the price might be worth paying. When Pinchot defended "the greatest good for the greatest number for the longest time," he was arguing for constraints on individual freedom—the freedom of people to enter the public domain to cut timber, graze cattle, plant crops, use water in whatever ways they liked—in order to defend a longer-lasting, better managed, more collective abundance. Whether confronting the natural scarcities of the western desert or the artificial scarcities of the cutover forest, the conservationist agenda was to manage these scarcities so as to "reclaim" their usurped abundance.

In one way or another, this imperative to manage scarcity in the service of a reclaimed abundance underpinned most western environmental politics in the first half of the twentieth century. Certainly the water reclamation projects derived their emotional and political force from it. So did the famous Colorado River Compact of 1922, in which the states of the upper and lower Colorado River Basin, feuding over the anticipated consequences of the Boulder Canyon Project and finally turning to the federal government to arbitrate between them, agreed to divide the waters of the river into two halves as a not entirely successful way of preventing California from receiving the lion's share of the division. (The compact relied for its statistics on exaggerated estimates of the river's flow, thereby allowing California—the earliest effective user as a result of Boulder Dam—to appropriate more than its proper share of the actual total.) But the imperative to manage scarcity to protect abundance reached well beyond water. Its fullest embodiment was almost surely in the national forests, with their elite cadre of disinterested, scientifically trained foresters managing a natural resource for the national good. Beyond the forests, it was still possible until 1934 for individual homesteaders to stake their claims as farmers or ranchers on the public domain, but in that year the Taylor Grazing Act finally withdrew this right for most of the remaining public lands. Homesteading continued but fell from thousands of new claims per year to a few hundred. Symbolically, 1934 thus marked the culmination of the long process whereby management and regulation replaced open access (or theoretical open access) to the public domain. For all practical purposes, the era of free land was finally at an end.

Arguably, the greatest environmental disaster of that era was the exception to prove the rule. Starting in 1931, the rains failed on the southern plains, so that farms that normally received eighteen inches per year—the minimum for many crops—received as little as eleven or twelve. Crops died as the parched soil cracked in the sun and temperatures soared above one hundred degrees for weeks at a time. The drought would
last for a decade, but what really made this climatic event a disaster was the fact that so many plains farmers had expanded their acreage in response to the boom years of World War I, investing in tractors and other new equipment to work farms that were significantly larger than before. The heavy debts they took on to finance this expansion bore heavily on them during the depressed agricultural conditions of the 1920s, so that by the time the rain failed in the early thirties, vast stretches of the southern plains lay open to the blistering heat and windstorms. With no ground cover to hold down the desiccated soil, dozens of extraordinarily severe dust storms occurred every year throughout the 1930s, giving the region a new name: the Dust Bowl. A single famous storm in May 1934 blew three hundred million tons of dust into the air, some of it traveling all the way to New York and Washington and finally landing on ships far out in the Atlantic Ocean. Thousands of families abandoned their homes, took to the road, and headed to California as “Okies,” the refugees from Oklahoma and elsewhere whose ordeals were so movingly described in John Steinbeck’s *The Grapes of Wrath* (1939).

In the face of such stark proof that the frontier dream of abundance had given way to scarcity and despair, government officials stepped in to offer expert technical assistance with their new techniques of integrated regional planning. The Forest Service organized the planting of over two hundred million trees to form “shelter belts” that would supposedly discourage soil from blowing. The Soil Conservation Service (a New Deal creation of the Franklin Roosevelt administration) promoted new techniques of contour plowing and dry tillage to discourage erosion and retain soil moisture more effectively. The Civilian Conservation Corps provided labor for these and other initiatives. Most striking, the Resettlement Administration declared that in some of the worst-hit areas, farming was simply not viable: the original frontier settlements had been a mistake. In such areas, abandoned farms were bought by the government to be converted to rangeland and pasture. And yet even this symbol of apparent failure and defeat had an optimistic underpinning. In the eyes of the planners, scarcity had been caused by the ignorant and ill-conceived use of natural resources. If settlement patterns and land-use practices could be rationalized, abundance and prosperity could be restored even to so troubled a landscape as the Dust Bowl. In the end, the return of the rains in the early 1940s—and the increasing use of fossil groundwater from the immense Ogallala Aquifer for irrigation—made the dust storms seem like a passing nightmare that technology and better management could prevent in the future. Few bothered to speculate what might happen when the aquifer itself eventually began to give out.

The multiagency assault on the problems of the southern plains was characteristic of the 1930s and carried the progressive conservation agenda to a new level of complexity. For many Americans, it seemed that economic and ecological problems were reinforcing each other in ways that required the integrated perspectives embodied in the Boulder Canyon Project. The result was a new commitment to regional planning and an effort to link conservation initiatives with government programs promoting unemployment relief, investment in economic infrastructure, and social reform. In the East, the most famous example of this new integrated planning approach was the Tennessee Valley Authority (TVA), whose dams, electrical generators, highways, and agricultural reforms transformed the economic life of an entire region. For a time, the TVA seemed to prove that regional planning could solve virtually all the nation’s ills.
The nearest parallel in the West was the Columbia River. There, efforts to develop the watershed in an integrated way had to contend with fierce competition between the Bureau of Reclamation and the Army Corps of Engineers over who should develop prime dam sites. Until the appearance of the bureau, the corps had been the government’s chief dam builder, and its members were not at all happy about the bureau’s growing prominence in the West. In 1937, the corps succeeded in completing the celebrated Bonneville Dam, but in 1941, the bureau finished the even more celebrated Grand Coulee Dam, which at that time was the largest concrete structure in the world, backing up a lake 150 miles long. In the end, the tensions between the two agencies resulted in the creation of a third entity, the Bonneville Power Administration, charged with selling electricity generated from the new dams.

Despite this interagency rivalry over dam construction, the reclamation projects on the Columbia River brought to the Pacific Northwest environmental and economic changes similar to those in California. The actual construction of the dams provided an infusion of relatively stable, high-paying jobs in an otherwise depressed economy. The new water supplies for irrigation had the usual effect of encouraging larger farms and more intensive forms of agriculture. But the most dramatic effects by now clearly concerned electricity. The Bonneville Power Administration was committed to distributing power to municipalities and public utilities so as to foster the widest possible use at the lowest possible rates. By the 1940s, the region had an immense surplus of electricity selling more cheaply than anywhere else in the nation. As a result, it attracted new industries that had especially heavy demands for power. In particular, aluminum production, one of the most voracious industrial users of electricity, concentrated in the region. With the coming of World War II, the availability of this aluminum enabled Seattle’s Boeing Airplane Company to enjoy an unprecedented boom, becoming one of the region’s most important employers in the postwar era.

It was cheap electricity that linked the Pacific Northwest to one of the most spectacular examples of government-sponsored interregional integration in the 1940s: the effort to develop the atomic bomb. Cheap electricity from the TVA permitted Oak Ridge, Tennessee, to produce uranium-235 via the extremely power-intensive gaseous diffusion process; cheap electricity from the Columbia River helped Hanford, Washington, become the site for a series of nuclear reactors and machine-shop facilities to manufacture plutonium. Both were tied to a network of other sites, the activities of which—collectively known as the Manhattan Project—had to be intricately coordinated in order to make the bomb a reality. Uranium was initially acquired from sources in the Belgian Congo and from the Eldorado mine on the Great Bear Lake in Canada; uncertainty about these foreign sources would soon fuel a uranium mining boom in the West’s Four Corners region in the years immediately following the war. The University of California at Berkeley, already a center for nuclear research under the leadership of the physicist Ernest Lawrence, made major intellectual contributions to the bomb-building effort, while the California Institute of Technology contributed its growing expertise in explosives and jet propulsion. Much of the technical work on the actual bomb was conducted at the government’s secret laboratory at Los Alamos in New Mexico. And the first nuclear test would occur in New Mexico at a site called Trinity.
on the desert sands near Alamogordo (postwar nuclear tests would be conducted at an even more isolated location north of Las Vegas, the Nevada Test Site). The extraordinary effort to produce the bomb centered in the West because of its new abundance of power, its large blocks of government-owned land, its isolation, and—paradoxically—its increasing integration with the rest of the nation. The military projects that came to fruition during the war would remain critical to the western economy at least until the end of the cold war era, establishing a partnership among the federal government, the corporate sector, and many western communities—a partnership that would profoundly shape regional development far into the future.

From one point of view, the dramatic changes that transformed the western landscape in the first half of the twentieth century represented unmitigated progress: new communities had sprung into being, parts of the region seemed prosperous as never before, and the desert had indeed bloomed. And yet all had unexpected social and environmental consequences. Residents of the Owens Valley more or less had to abandon their agrarian dreams once their river was tapped to serve Los Angeles; later, the city's growing demand would decrease water levels upstream at Mono Lake, endangering brine shrimp populations and the waterfowl that depended on them. Irrigated farms eventually began to suffer from the salts that accumulated in their soils, necessitating their abandonment or expensive purification techniques. The immense agricultural operations of the Far West required the use of migrant labor for planting and harvesting, creating an underclass of workers who were exposed to any number of toxic substances as growers increasingly came to depend on pesticides to protect their crops. Mine tailings from the uranium boom of the 1950s became a serious health hazard for residents of the Navajo reservation and other communities in the vicinity. Nuclear wastes dumped at Hanford in the years during and after the war created a long-term radiation hazard at that site. Fallout from the above-ground nuclear explosions at the Nevada Test Site killed livestock and elevated human cancer rates in the region lying downwind. The list could go on and on.

But perhaps the most suggestive example of deleterious environmental change occurred on the Columbia River, where the new dams prevented salmon and other anadromous fish from making their annual spawning runs. Salmon had once traveled hundreds of miles upstream to lay their eggs in freshwater locations, where the young fry, once hatched, could grow to maturity without being threatened by the predators they would face in the open sea. Since the spawning runs sustained a large fishing fleet in the waters of Puget Sound and on the open ocean, various efforts were made to protect them. Engineers added fish ladders to the relatively low Bonneville Dam so that adult salmon could still make their way upstream. Unfortunately, young salmon heading back downstream could not find these ladders and had to make the often lethal journey through the dam's pipes and turbines; moreover, the altered temperatures and still water of the new reservoirs made the fishes' journey in both directions more hazardous. On the upper river, high dams like Grand Coulee could not possibly be traversed even by fish ladders, and so heroic airlifts were attempted to capture fish at the base of the dam when its gates were first closed. Above Grand Coulee, salmon would henceforth disappear altogether, permanently ending the spawning runs for hundreds of miles upriver.
To replace those runs, both the fish and the fishing fleet would henceforth have to rely more and more heavily on the artificial output of the fish hatcheries that Washington, Oregon, and the U.S. Fish and Wildlife Service would operate along the Pacific coast. The bitter irony was that efforts to manage the river toward human ends had necessitated an equally elaborate effort—reorchestrating salmon reproductive cycles over thousands of square miles—to manage fish populations that not long before had sustained themselves without any human intervention at all. The long-term success of this massive ecological experiment remains as yet unclear; recent evidence suggests that the genetic uniformity of hatchery fish populations may eventually threaten their viability.

The Urban Wilderness

The newly integrated western landscape that had come into being by mid-century had been mandated by the state, managed by corporations and federal bureaucracies, consolidated by war, and—perhaps most important—concentrated by cities. A handful of metropolitan centers had become foci for the regional economy and homes for most of the West's inhabitants. Los Angeles had emerged as the largest city in the West and before long would surpass Chicago as the nation's second-largest metropolitan area. Joining it were Houston, Dallas, Kansas City, Denver, Salt Lake City, Phoenix, San Francisco, Seattle, and Anchorage, each pulling in the resources of a broad hinterland region—especially water and energy—to sustain itself. Contrary to the frontier myth,
the West had for a long time almost led the nation in the percentage of its population living in urban areas; in 1870, only the Northeast had been more urban than the Far West. By the mid-twentieth century, the rest of the nation had caught up, so that the one-half to two-thirds of western citizens who lived in urban places roughly matched the national average of 59 percent. Moreover, western cities had become tied to markets, transportation networks, and administrative systems that were truly national in scope. Like the rest of the United States and much of the world as well, the West had become a metropolitan region by mid-century, with urban and suburban residents consuming and reworking the resources of immense rural districts as part of a fully integrated economy.

As such, they faced many of the same environmental problems and challenges as urban dwellers elsewhere. By 1950, Los Angeles was widely regarded as the extreme example of a new urban landscape peculiar to western cities that had grown to maturity in the twentieth century. Dependent on the automobile for transport, it had sprawled in all directions as its residents had sought to fulfill the suburban dream of isolating themselves from the ills of an urban downtown. In the process, they created a multicentered city with no true focus, in which residents were forced to make long car trips—for work, for shopping, for school, for recreation, for everything—on freeways that became the arteries of the city. But this in fact was the spatial landscape that was developing on the margins of even much older American cities, a fact that became more apparent as the downtown centers of those cities began having more and more trouble competing with their own suburbs. Remove Manhattan, peel away the northeastern forest, and the basic spatial arrangement of Connecticut and New Jersey is not so different from that of Los Angeles. The California metropolis had pointed a way toward the future, and eastern cities soon followed its lead. The long journey between residence and workplace, the endemic traffic jams, the smog, the highway strips, the fast-food joints, and the shopping centers, in addition to the almost invisible systems that deliver water, gas, and electricity while removing sewage and solid waste—these are found to varying degrees in all American cities, not just in Los Angeles or the West. At the same time, the spread of highway systems, rural electrification, household appliances, telephone networks, radio and television broadcasting, and national distribution networks for goods have all enabled Americans from similar socioeconomic classes to enjoy similar life-styles whether they reside in cities, suburbs, or rural districts. One of the most important trends of the twentieth-century West, then, has been its steady convergence with the rest of the nation toward a common material life. In a sense, it is precisely this shared material life that has been the real fulfillment of the reclamation dream.

And yet there remains something distinctive about this newly integrated American West, for in fact the western landscape is not like the rest of the country. Its aridity makes the competition for water a far more compelling struggle than in the East and much more of a zero-sum game between different places and users. The heat of its desert summers has led it to join hands with the South in adopting air conditioning as a prerequisite for continuing growth. The scale of things often does seem larger in the West than elsewhere. The long distances—between far-flung metropolises, between sprawling suburbs, between city and country, between one state and another—impose greater travel times
and energy costs on even the simplest journeys, making places seem isolated from each other even when in most other ways they are not. One gets used to big things in the West, whether they be mountains or mines or dams or farms. And the enslaved nature of western settlement makes it easy for places of great poverty—Indian reservations, barrios, depressed farming districts, dying towns—to share the regional landscape with the far more affluent inhabitants of well-to-do suburbs and cities. All these qualities mark the West as a special place.

But perhaps the most distinctive feature of the modern western environment has as much to do with the way people think about the regional landscape as the way they use it. The West has become the nation’s greatest repository of “wilderness,” a sacred space that for many Americans embodies both the simple virtues of the frontier past and the sublime wonders of pristine nature. Wilderness marks the paradoxical fulfillment of western urbanization. Whereas earlier generations looked to the West and dreamed of a working rural landscape—a place of farms and mines and lumber camps and small towns—urban Americans over the course of the twentieth century have increasingly preferred to think of it in nonworking terms, as a recreational place for escape or play. A similar shift occurred at the same time in national environmental politics: the earlier conservation movement had concerned itself most of all with questions of production and the efficient use of natural resources, whereas the postwar environmental movement—more urban in its basic outlook—became much more interested in problems of consumption, pollution, and the protection of natural systems. As the nonrural population of both the region and the country has grown, the cultural meaning of the western landscape has shifted to reflect predominantly nonrural values. Although wilderness might seem on the surface to represent the least urban of places, the way of viewing the natural environment that it reflects—as a land with no human inhabitants—has in fact come much more easily to urban people than rural ones. Traditional rural inhabitants of the West have been accustomed to earning their living in one way or another from the land and its creatures, activities that by definition involve mingling the natural and the human in ways that one would not ordinarily call “wild.” Many modern westerners, on the other hand, accustomed to earning their living from urban markets, do not obtain food or shelter or basic income by working the land. And so, unsurprisingly, when fleeing the city they have often been drawn to unworked land: wilderness.

The West has been a destination for leisure-class travelers since the Civil War and before. At the same time that wealthy New Yorkers were first discovering the pleasures of hunting camps in the Adirondacks, Congress was setting aside Yosemite and Yellowstone as the first nonurban American parks. The initial impulse to create national parks came from several sources: a feeling of inferiority relative to the classical monuments of Europe; a desire to preserve the most “scenic” and “picturesque” elements of the American landscape; and a sense that the nation’s “natural wonders” were among its most distinguishing features. In addition, powerful lobbies saw possible benefits for themselves in establishing parks. In the earliest years, the major western railroads sought to promote parks along their routes as a way of encouraging transcontinental passenger traffic. Railroad tourism characteristically involved delivering hundreds of well-to-do travelers to a single passenger depot, where they then traveled by